文章系统  
首页 > 北京大学 > 浏览文章

Nature Biotechnology报道生命科学学院李毓龙组及合作者新型乙酰胆碱荧光探针的开发及其应用

(编辑:南开大学 日期:2018年08月06日 浏览: 加入收藏 )

2018年7月9日,北京大门生命科学学院、北大-清华生命科学联合中间、PKU-IDG/麦戈文脑科学研究所李毓龙研究组与弗吉尼亚大学医学院朱骏(J Julius Zhu)研究组合作,在Nature Biotechnology杂志在线发表了题为“A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies”的研究论文,首次成功开发了灵敏、特异、可遗传编码的乙酰胆碱荧光探针,并成功地在不同生物系统中实时检测内源乙酰胆碱旌旗灯号,为理解乙酰胆碱在心理和病理条件下的功能提供了紧张的工具。

乙酰胆碱是研究史上第一个被鉴定的神经递质,其相干研究推动了神经递质和突触传递的概念的建立1-4。目前人们已经对乙酰胆碱能神经元在外周神经体系(尤其是神经肌肉接点)的功能有了较为明确的阐述,但对其在中枢神经体系中的结构和功能的熟悉仍存在较大争议5。因为乙酰胆碱能神经元在皮层等区域的广泛投射,传统研究认为乙酰胆碱在大脑中作为广谱的神经调质,在多个脑区起到均一化的作用,如调节醒觉等心理功能6,7。然而,随着近年来神经环路研究的推动,乙酰胆碱能神经元参与的神经环路与学习记忆、细致、奖赏等举动的相干性被渐渐解析,并且其功能多呈现区域特异性甚至神经元特异性的功能调节8-10。与此相对,在多种复杂神经疾病如成瘾、阿兹海默症中都伴随着特定脑区胆碱能信息传递的非常11-13。子曰:“工欲善其事,必先利其器。”进一步了解乙酰胆碱的心理功能及其在疾病中的贡献必要合适的方法,能够细胞特异性且实时灵敏地对乙酰胆碱在特定举动中的动态转变进行追踪。

与其从头设计,不如借鉴大天然的鬼斧神工。该研究首次通过对于神经递质特异的G蛋白偶联受体(GPCR)进行改造,在特定位置嵌入循环重排的荧光蛋白14,将受体在被神经递质激活后的构象转变变化为荧光蛋白荧光旌旗灯号的转变,进而反映对应神经递质的浓度转变。通过对于乙酰胆碱受体的改造以及一系列突变筛选和优化,该研究获得对于乙酰胆碱具有灵敏光学相应的荧光探针,其对于心理浓度乙酰胆碱具有高信噪比的光学旌旗灯号转变,并且具有亚秒级的反应速度以及优秀的分子特异性,可实现时空特异的对于乙酰胆碱旌旗灯号的正确指征。

Nature Biotechnology报道生命科学学院李毓龙组及合作者新型乙酰胆碱荧光探针的开发及其应用

乙酰胆碱探针在培养细胞中体现出对乙酰胆碱特异的荧光相应。

在进一步工作中,该研究应用新开发的乙酰胆碱探针,在小鼠的多个脑区的急性脑片系统中成功检测了内源的乙酰胆碱释放,并且阐明了乙酰胆碱释放如何受到突触前神经元活性的调节,以及其在心理情况下的空间作用范围,为该领域长久以来的争论提供了直接的实验证据。同时,应用果蝇和小鼠为模式动物,该研究成功实现了在活体果蝇的嗅觉体系中检测内源乙酰胆碱对嗅觉信息的编码,以及在小鼠视觉皮层神经元乙酰胆碱在细致性视觉刺激时的动态转变。这一系列工作为了解乙酰胆碱在不同心理情况下的释放及其功能提供了优秀的范例。

北京大门生命科学学院李毓龙研究员与弗吉尼亚大学医学院朱骏教授为文章的共同通信作者。李毓龙组博士研究生井淼、朱骏组张鹏博士为共统一作。北京生命科学研究所罗敏敏课题组,北京大学宋艳课题组,弗吉尼亚大学Paula Barrett课题组,加利福尼亚大学圣克鲁斯分校左毅课题组,南加州大学张立课题组,石溪大学Lorna Role课题组、David Talmage课题组为研究提供了紧张的支撑和帮助。本工作获得了北京大学膜生物学国家重点实验室、北大-清华生命科学联合中间、国家重点基础研究发展计划(973计划)、国家天然科学基金、青年千人计划、美国脑计划的大力支撑。

参考文献:

1. Dale, H.H., Feldberg, W. & Vogt, M. Release of acetylcholine at voluntary motor nerve endings. The Journal of Physiology 86, 353-380 (1936).

2. Loewi, O. Weiteres ber Humorale bertragbarkeit der Herznervenwirkung. Klinische Wochenschrift 3, 680-681 (1924).

3. Katz, B. & Miledi, R., Vol. 207 1097-1098 (1965).

4. Katz, B. & Miledi, R. the Effect of Calcium on Acetylcholine Release From Motor Nerve Terminals. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain) 161, 496-503 (1965).

5. Sarter, M., Parikh, V. & Howe, W.M. Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat Rev Neurosci 10, 383-390 (2009).

6. Hasselmo, M.E. Neuromodulation: Acetylcholine and memory consolidation. Trends in Cognitive Sciences 3, 351-359 (1999).

7. Picciotto, M.R., Higley, M.J. & Mineur, Y.S. Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior. Neuron 76, 116-129 (2012).

8. Klinkenberg, I., Sambeth, A. & Blokland, A., Vol. 221 430-442 (2011).

9. Lim, S.A.O., Kang, U.J. & McGehee, D.S. Striatal cholinergic interneuron regulation and circuit effects. Frontiers in Synaptic Neuroscience 6 (2014).

10. Jiang, L. et al. Cholinergic signaling controls conditioned fear behaviors and enhances plasticity of cortical-amygdala circuits. Neuron 90, 1057-1070 (2016).

11. Mash, D.C., Flynn, D.D. & Potter, L.T. Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer's disease and experimental cholinergic denervation. Science 228, 1115-1117 (1985).

12. Dineley, K.T., Pandya, A.A. & Yakel, J.L. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 36, 96-108 (2015).

13. Wesson Ashford, J. Treatment of Alzheimer's disease: the legacy of the cholinergic hypothesis, neuroplasticity, and future directions. J Alzheimers Dis 47, 149-156 (2015).

14. Baird, G.S., Zacharias, D.a. & Tsien, R.Y. Circular permutation and receptor insertion within green fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America 96, 11241-11246 (1999).

编辑:山石

责编:白杨

 

上一篇:物理学院吕劲团队发现新型二维材料 或续写摩尔定律对晶体管的预言
下一篇:焦宁教授研究团队在醇类分子选择性官能团化方面取得紧张进展

网友评论: